Scientific Method Notes

• What is Physical Science?
 1. Physics
 2. Chemistry
 3. Astronomy

• Science = Latin for ______________________________
• Method = Greek for __________
• Science + Method = “______________________________ _______”

Step #1:
• Use 5 senses
 1.
 2.
 3.
 4.
 5.

Step #2:
• What are trying to figure out/ is reason for doing the experiment?

Step #3:
• Hypo = _____________(Greek)
• Thesis = _____________ (Greek)
• What you think the answer will be based on prior knowledge/experimentation.
 •
 •
 •
• It may be __________________ or __________________________
Format: If __________________, then _______________ because......
(justification statement)

Justification Statement - The __________________________or
_____________________________(s) you have had that justify your reasoning
behind your prediction about what will happen.

Step #4:
- _________________Hypothesis
- Carry out or conduct an ___________________

*Good Experiment
 1.-
 2.-
 3.-

Step #5:
- Data = _________________
- Compare it with the _________________

Step #6:
- _________________ or _________________your hypothesis using the _____________
in your **Conclusion Statement**.

Step #7:

Measurement & Metric Conversion

*SI = International System of Measurement (Metric System)-

Why do scientists use the metric system? Compare data & Communicate easier

3 Basic Measurements
1. Grams =
2. Meter =
3. Liter =
Measure a liquid from the bottom of the meniscus (bottom of the curve of the water).

EX.

Graduated Cylinder—used to measure volume

Pg. ___ of Agenda = Metric Conversion Chart

<table>
<thead>
<tr>
<th>King</th>
<th>Henry</th>
<th>Died</th>
<th>Grams</th>
<th>Meters</th>
<th>Liters</th>
<th>Drinking</th>
<th>Chocolate</th>
<th>Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>H</td>
<td>Da</td>
<td>G</td>
<td>M</td>
<td>L</td>
<td>D</td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>Kilo</td>
<td>Hecto</td>
<td>Deka</td>
<td>G</td>
<td>M</td>
<td>L</td>
<td>Deci</td>
<td>Centi</td>
<td>Milli</td>
</tr>
<tr>
<td>1,000</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>.1</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How to Convert to a Larger unit
From a smaller unit?

- Move the decimal the same number of places the unit is from place over to the left
 the smaller unit
EX.

How to Convert to a Smaller unit
from a larger unit?

- Move the decimal place over to the right the same number of places
 the smaller unit is over from the larger unit
EX.
Volume = x x

How do I convert from L to m3 to get the volume of an irregular solid? Or mL to cm3?

What is the SI unit for Weight?

What is the difference between mass and weight?

Mass is the amount of _______ or stuff that something is made of & Weight is mass plus _______ pulling on it

Ex.

Density Formula = /volume =

Units Kg/m3 or g/cm3

How is knowing the density of an object helpful?

-You can predict whether it will float or sink in a liquid

Which one will sink? float?

Pg. 25 fig.14 Ex. Water & Ice

Variables & Graphs

*What is a VARIABLE?

*In an experiment there are 2 types of variables
 1.
 2.

 1. INDEPENDENT VARIABLE

-This is the variable we can ______________ in an experiment.
-Independent variables are ________________/_________ you start following your procedures
-On a Data Table this variable is on the _________ side.
-On a Graph it’s on the _________ axis
Examples of Independent variables:

- Time- every 30 seconds, every day, etc.
- Distance-every 0.5 meters, every 10.0 cm
- Amount-add 2.0 grams each trial

- Your book calls the independent variable the ____________ variable, because we manipulate or set it to our specifications
- The scientific community calls it the_________ variable

2. **DEPENDENT VARIABLE**

*This is the variable we _______________ or _______________ ahead of time in an experiment.
- ___________ during the experiment
* On a ____________this variable is on the __________ side.
* On a __________ it goes on the ______-axis

Example of a Dependent variable: **Temperature**

<table>
<thead>
<tr>
<th>Temperatures In NY City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

*Your book calls the Dependent Variable the____________________ variable.

*The scientific community calls it the _________variable.
Controlled Experiment
- ________ variable is changing or being tested
- Sometimes a control trial or group is used for _________________ with experimental data

GRAPHING
- A Graph is a __________ or __________ that shows the relationship between changing things. It displays the relationship between __________ or __________.
- 3 Main Types of Graphs
 1. __________ 2. __________ 3. __________

7 Rules For Graphing
- **RULE # 1.** Always draw neat lines with a __________.
- **RULE # 2.** Make your graph is at least __________ to __________ page in size.
- **RULE # 3.** __________ (goes across the bottom of your graph) & __________ (the line that goes up & down on the left side of your graph)

Rule#4. ________ three places on your graph descriptively.
 1. __________
 2. __________ (with __________ in parentheses)
 3. __________ (with __________ in parentheses)

Ex. WHAT DOES YOUR GRAPH SHOW US?

2. Title the x-axis with the __________ variable

3. Title the y-axis with the __________ variable

RULE #5. Number the x and y axis with a regular numerical Sequence or Pattern to space out your data and fill the entire graph starting with Zero at the corner.

Ex: 1 2 3 4, 1 3 5, 2 4 6 8, 5 10 15 20 25,
0.5 1.0 1.5 2.0 2.5, 0.1 0.2 0.3 0.4 0.5,
0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
RULE #6. Number the x and y axes on the lines (draw them) of the graph, not between the lines.
EX. (see the example graphs made in class)

RULE #7. If your graph shows more than one trial of data, or has more than 1 line,

-A key can be different colors, different lines, or patterns etc...

EX.

<table>
<thead>
<tr>
<th>Graph Rubric 12 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No Ruler=No Points!!!!!!</td>
</tr>
<tr>
<td>• Title for the Graph=+1</td>
</tr>
<tr>
<td>• “y” is place at the top of the y-axis =+1</td>
</tr>
<tr>
<td>• y-axis titled with units in parentheses=+1</td>
</tr>
<tr>
<td>• y-axis has a regular numerical sequence with lines next to each number=+1</td>
</tr>
<tr>
<td>• “x” is place at the end of the x-axis=+1</td>
</tr>
<tr>
<td>• x-axis titled with units in parentheses=+1</td>
</tr>
<tr>
<td>• x-axis has a regular numerical sequence with evenly spaced lines next to each number or bars even in width with categories listed below each one=+2</td>
</tr>
<tr>
<td>• Zero is at the corner of the graph=+1</td>
</tr>
<tr>
<td>• Data points plotted and connected with a Line or Bars are made to the height of the data & filled in with different patterns or colors =+1</td>
</tr>
<tr>
<td>• If there is more than one trial of data, make a color or pattern key. =+2</td>
</tr>
</tbody>
</table>
Slope - How steep the line is on a ______ graph - Amount of ______ of the y-axis variable (Dep.) for every x-axis variable (IND.)

What does it mean when the slope is steep? * Change happens quick

Not steep/shallow? * Change is slower/gradual

Units for Slope = Dep. Unit / Ind. Unit EX

Formula Slope = \(\frac{\text{Rise}}{\text{Run}} \)

How do I show the work for calculations? formula = work with units = answer with units

Ex. Pg. 30 fig. 23
1. Slope of line between 10 min and 40 min.

Ex. Pg. 30 Math Analysis #1-4 (do not copy)
1.
2.
3.
4.
Significant Figures

Physical Sciences

What is a significant figure?

- There are 2 kinds of numbers:
 - Exact: the amount of money in your account. Known with certainty.

What is a significant figure?

- Approximate: weight, height—anything MEASURED. No measurement is perfect.

When to use Significant figures

- When a measurement is recorded it should be to the place value of the accuracy of the instrument you measure with.

When to use Significant figures

- If you measured the width of a paper with your ruler you might record 21.7cm.

 To a mathematician 21.70, or 21.700 is the same.

But, to a scientist 21.7cm and 21.70cm is NOT the same

- 21.700cm to a scientist means the measurement is accurate to within one thousandth of a cm.

But, to a scientist 21.7cm and 21.70cm is NOT the same

- If you used an ordinary ruler, the smallest marking is the mm, so your measurement has to be recorded as 21.7cm.

How do I know how many Sig Figs?

- Rule: All digits are significant starting with the first non-zero digit on the left.

Exception to rule: In whole numbers that end in zero, the zeros at the end are not significant if the instrument is not accurate to that place value.
How many sig figs?
- 7
- 40
- 0.5
- 0.00003
- 7,000,000

How many sig figs here?
- 1.2
- 2100
- 56.76
- 4.00
- 0.0792
- 7,083,000,000

How do I know how many Sig Figs?
- **2nd Exception to rule:** If zeros are sandwiched between non-zero digits,

How do I know how many Sig Figs?
- **3rd Exception to rule:** If zeros are at the end of a number that has a decimal, the zeros are significant.

How do I know how many Sig Figs?
- 3401
- 2100
- 2100.0
- 500
- 0.00412
- 8,000,050,000

How many sig figs here?

What about calculations with sig figs?
- **Rule:** When adding or subtracting measured numbers, the accuracy of the answer is restricted to the place value of the least accurate measurement.
- 2.45cm + 1.2cm = 3.65cm in math class
- In science class we round to 2 sig figs: 3.7cm
- 7.432cm + 2cm = 9.432 \(\rightarrow \) 9cm

Add/Subtract examples
- 56.328cm – 3.31cm = 53.018 \(\rightarrow \) 53.02cm
- 5g – 1.043g = 3.957 \(\rightarrow \) 4g
Multiplication and Division

Rule: When **multiplying or dividing**, the answer will be to the least amount of sig figs

<table>
<thead>
<tr>
<th>A couple of examples</th>
<th>A couple of examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.78 cm x 2.45 cm = 139.111 (\rightarrow) 4sf x 3 sf = 3sf (\rightarrow) 139cm²</td>
<td>50g</td>
</tr>
<tr>
<td>75.8 cm x 9.6 cm = ?</td>
<td>730cm³</td>
</tr>
<tr>
<td>3sf x 2sf = 2sf</td>
<td>3445g/70 = ?</td>
</tr>
</tbody>
</table>

A-49.21g

70 is not a measurement

<table>
<thead>
<tr>
<th>More Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>9.0</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.000</td>
</tr>
<tr>
<td>0.001</td>
</tr>
<tr>
<td>0.0100</td>
</tr>
</tbody>
</table>